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Abstract 
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section 

components in order to meet future engine higher fuel efficiency and lower emission goals. A 
fundamental understanding of sintering and thermal cycling degradation of thermal barrier coating 
systems under engine high-heat-flux conditions will provide insights into how to further maximize the 
coating capabilities. In this presentation, thermal barrier coating development considerations and 
requirements will be discussed. An experimental approach is established to monitor in real time the 
thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic 
temperature gradients. It is demonstrated that the increasing and decreasing trends in thermal conductivity 
can be closely related to the coating sintering and subsequent delaminations. Advanced low conductivity 
thermal barrier coatings have also been developed using a multi-component defect clustering approach, 
and shown to have significantly improved thermal stability due to nano-sized and low mobility defect 
clusters associated with the paired rare earth dopant additions. The durability and erosion resistance of 
low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture 
design, composition optimization, in conjunction with more sophisticated modeling and design tools. 
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Motivation

— Thermal and environmental barrier coatings (T/EBCs) can significantly 
increase gas temperatures, reduce cooling requirements, and improve 
engine fuel efficiency and reliability
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Revolutionary Ceramic Coatings Greatly 
Impact Gas Turbine Engine Technology

— Ceramic coatings are critical to future engine efficiency, power density, 
and compactness goals

NASA UEET Goals
• 70% NOx reduction
• 8-15% increase in efficiency
• 8-15% reduction in CO2
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OBJECTIVES

• Thermal barrier coating high-heat-flux testing
– Conductivity measurements and coating degradation evaluation
– Sintering and failure mechanisms

• Low conductivity thermal barrier coating development
– Requirements and design considerations 
– Advanced oxide defect cluster coatings

• The 3000 °F (1650 °C) thermal and environmental barrier coatings for 
SiC/SiC ceramic matrix composites
– Coating concept
– Radiation conductivity evaluation
– Advanced 3000 °F (1650 °C) coating durability evaluation

Thermal barrier coating high-heat-flux testing

• Low conductivity thermal barrier coating development

• The 3000 °F (1650 °C) thermal and environmental barrier coatings for 
SiC/SiC ceramic matrix composites
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Conventional 0.3 Mach Burner Rig

― Thermal barrier coating burner testing: relatively low heat flux ~20 W/cm2

Burner rig bar specimen testing Hex bar specimen testing

High Heat-Flux Test Approaches

– Oxy-fuel torch (GEAE), plasma torch (Westinghouse) and CO2 laser 
(NASA, Purdue) high heat flux rigs are being used to assess coating 
failure mechanisms and durability

GEAE Oxy-Fuel (JETS) Rig Westinghouse Plasma Torch Rig NASA-GRC CO2 Laser Rig
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NASA CO2 Laser High-Heat-Flux Test 
Approach

 A uniform laser (wavelength 10.6 µm) power distribution achieved using an 
integrating lens

 Real time conductivity measurements by monitoring the ceramic surface and 
substrate temperatures at given heat flux
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Laser Heat Flux Testing in Water Vapor Environments 
for Si-Based Ceramics/Coatings

– Laser heat flux “steam” rig
- Precise control of heat fluxes and temperatures
- High temperature and high heat flux testing capabilities
- Innovative “micro-steam environment” concept
- Real-time specimen health monitoring capability

- Steam injected at up to 5m/sec
- Testing temperature >1700 °C

Laser High Heat Flux Combustor and 
Turbine Airfoil Rigs

– Emphasize realistic temperatures, heat flux and stresses 
Laser heat flux combustor 
TBC test facility

Coated Mini-segment

video camera 
with 
UV-pass filter quartz lamp

laser beam tube
with -13” lens8 micron 

pyrometer

cooling air line

4-point bend fixture

load cell
load frame

thermocouple

video camera 
with 
UV-pass filter quartz lamp

laser beam tube
with -13” lens8 micron 

pyrometer

cooling air line
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load cell
load frame

thermocouple

Turbine high heat flux (up to 315W/cm2) rig Advanced cooling design Selected test articles
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Baseline ZrO2-(7-8) wt%Y2O3
Thermal Barrier Coating Systems

 Relatively low intrinsic thermal conductivity ~2.5 W/m-K
 High thermal expansion to better match superalloy substrates
 Good high temperature stability and mechanical properties
 Additional conductivity reduction by micro-porosity

100 µm

Ceramic coating

Bond coat

(a) Plasma-sprayed coating
25 µm

Ceramic coating

Bond coat

(b) EB-PVD coating

Thermal Conductivity Increase Kinetics of 
Plasma-Sprayed ZrO2-8wt%Y2O3 Coatings

— The conductivity reduction by microcracks and micro-porosity can not 
persist under high temperatures due to coating sintering

— The coating durability can be affected by sintering
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Elastic Modulus of Free-Standing Plasma-
Sprayed ZrO2-8wt%Y2O3

— The coating “elastic modulus” also increases significantly with 
annealing and sintering
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Thermal Conductivity Response of Plasma-Sprayed ZrO2-
8wt%Y2O3 Coatings under Thermal Gradients
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ZrO2-8wt%Y2O3/Mullite+BSAS/Si System 
under Steady-State Heat-Flux Testing

— Plasma-sprayed ZrO2-8wt%Y2O3/mullite+BSAS TEBC system on SiC/SiC 
tested at 1482 °C (2700 °F)

— Coating delaminates at temperature due to sintering/creep
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Sintering Cracks and Delaminations

— High heat flux surface sintering cracking and resulting coating 
delaminations

Kokini and Takeuchi, Mat. Sci. and Eng., 189 (1994), pp. 301-309. 
Zhu and Miller, J. Mater. Res. 14(1999).  Mater. Sci. Eng. A245(1998), 212-223.

Tsurface=1280°C
Tinterface=1095°C
Thickness=130 µm

Zhu et al., Surf. Coat. Tech., 138 (2001), 1-8

surface vertical cracks

Delamination cracks

50 µm
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Increased Surface Sintering under Pulsed 
Heat Flux

— More severe surface sintering expected under pulsed heat flux

1.6 mm diesel thick TBC

Surface Sintering Cracks and Delamination 
Under Pulsed Heat Flux Conditions

— Surface sintering, cracking and delaminations under pulsed heat flux
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• Thermal barrier coating high-heat-flux testing

Low conductivity thermal barrier coating development

• The 3000 °F (1650 °C) thermal and environmental barrier coatings for 
SiC/SiC ceramic matrix composites

Low Conductivity Thermal Barrier Coating 
Design Requirements 

— Low conductivity (“1/2” of the baseline) retained under thermal 
gradient

— Improved sintering resistance and phase stability

— Better durability and mechanical properties
• Cyclic life
• Erosion/impact resistance

— Preferably use existing infrastructure and easy processing 
systems

— Other design considerations
• Favorable optical properties
• Suitable for various metal and ceramic components
• Affordable and safe
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Low Conductivity Thermal Barrier Coating 
Design Approaches 

 Many efforts on modifying coating microstructures and porosity, 
composite TBCs, or alternative oxide compounds

 Emphasize ZrO2- or HfO2-based alloy systems – defect cluster approach

 Advantages of defect cluster approach

•Advanced design approach: design of the defect clustering at the 
molecular level

•Better thermal stability: point defects are thermodynamically  stable

•Improved sintering resistance: effective defect concentration reduced and 
activation energies increased by clustering

•Easy to fabricate: plasma-sprayed or EB-PVD processes

Toughness Consideration

Bast and Schumann, Ceram. Eng. Sci. Proc. 23(2002), 525-532 

 The alloy based systems have higher fracture toughness than 
oxide compounds such as perovskite and pyrochlore oxides

Normalized
Toughness
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Development of Advanced Defect Cluster Low 
Conductivity Thermal Barrier Coatings

— Multi-component oxide defect clustering approach (Zhu and Miller, US 
Patent No. 6,812,176)

— Defect clusters associated with dopant segregation
— The 5 to 100 nm size defect clusters for significantly reduced thermal 

conductivity and improved stability

EELS elemental maps of EB-PVD ZrO2-
14mol%(Y, Gd,Yb)2O3

Plasma-sprayed ZrO2-
13.5mol%(Y, Nd,Yb)2O3

EB-PVD ZrO2-12mol%
(Y, Nd,Yb)2O3

e.g.: ZrO2-Y2O3-Nd2O3(Gd2O3,Sm2O3)-Yb2O3(Sc2O3) systems
Primary stabilizer

Oxide cluster dopants with distinctive ionic sizes

Defect Clusters in a Plasma-Sprayed Y2O3, Nd2O3 and 
Yb2O3 Co-Doped ZrO2-Thermal Barrier Coating

— Yb, Nd rich regions consisting of small clusters with size of
5 to 20 nm
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Low Conductivity Defect Cluster Coatings 
Demonstrated Improved Thermal Stability
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— Thermal conductivity significantly reduced at high temperatures for the 
low conductivity thermal barrier coatings

— Phase stability also improved
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Advantages of Four-Component Defect Cluster Low 
Conductivity Coating Approach Demonstrated

― The coatings showed significantly lower thermal conductivity compared 
to two- or three-component systems under higher temperatures
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Thermal Conductivity of Oxide Defect Cluster 
Coatings Tested at Higher Temperatures

― Cubic and t’ phase coatings showed lower thermal conductivity than 
baseline ZrO2-8wt%Y2O3

― Both composition regions are important for various applications
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Furnace Cyclic Behavior of ZrO2-(Y,Gd,Yb)2O3
Thermal Barrier Coatings 

― The cubic-phase ZrO2-based low conductivity TBC durability can be further 
improved by an 8YSZ or low k t’-phase interlayer

― The t’-phase low conductivity TBCs achieved at least baseline 8YSZ life
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― The low conductivity turbine airfoil thermal barrier coatings successfully 
tested under simulated engine thermal gradient cyclic conditions

Advanced Low Conductivity Coatings Showed 
Excellent High Temperature Cyclic Durability

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 50 100 150 200 250 300 350

0 500 1000 1500 2000 2500

Th
er

m
al

 c
on

du
ct

iv
ity

, W
/m

-K

Time, hours

Cycle number

Tsurface=2480 °F (1360 °C)
Tinterface=2020 °F(1104 °C)

6 min heating, 2 min cooling cycles

Low conductivity EB-PVD turbine 
airfoil coating

NASA/TM—2005-213857 15



― The low conductivity combustor coatings showed better performance 
than baseline coating at the 2700 to 2800 °F

― The 3000 °F (1650 °C) capable ZrO2 and HfO2 based combustor thermal 
barrier coatings also successfully developed

Advanced 2800 to 3000 °F Low Conductivity Coatings 
Developed for Metallic Combustor Applications
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Development of Advanced Erosion Resistant Turbine 
Blade Thermal Barrier Coatings

― High toughness, multi-component defect cluster erosion resistant low 
conductivity thermal barrier coatings also under development
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results at 2200 °F

Test specimen
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Advanced Impact/Erosion Resistant Thermal 
Barrier Coatings

― Improved toughness and strain tolerance

Burner rig erosion and impact test results at 2200 °F

• Thermal barrier coating high-heat-flux testing

• Low conductivity thermal barrier coating development

The 3000 °F (1650 °C) thermal and environmental barrier coatings 
for SiC/SiC ceramic matrix composites
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Advanced 3000 °F (1650 °C) Coatings For 
SiC/SiC CMCs

High temperature capability 
thermal and radiation barrier
Energy dissipation and chemical 
barrier interlayer

Secondary radiation barrier, thermal 
control with chemical barrier interlayer

Environmental barrier
Ceramic matrix composite (CMC)

— Low thermal conductivity
— High temperature stability
— Excellent thermal stress resistance
— Enhanced radiative flux resistance and radiation cooling
— Improved environmental protection
— Designed functional capability

Coating Radiation Performance Evaluation and 
Radiation Barrier Coatings Development

— Radiation conductivity evaluated using the laser heat flux approach
— Significant conductivity increase due to increased radiation at high 

temperatures especially under thermal gradients
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Evaluation of Radiation Thermal Conductivity of 
T/EBC Systems at High Temperatures

— Advanced HfO2 coatings demonstrated improved radiation resistance 
compared to the baseline ZrO2-8wt%Y2O3 coating
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Advanced 3000 °F (1649 °C) Coatings Development for 
SiC/SiC Combustor Liner and Vane Applications

— The hafnia (zirconia) top coating/modified mullite intermediate layer 
systems demonstrated excellent cyclic durability and radiation resistance 
at 1650 °C (3000 °F)

— Advanced high temperature ceramic bond coats also developed

Modified mullite nano-
composite interlayer coating

HfO2-Y2O3 coatings

Multi-component HfO2
coating system
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Summary and Conclusions

• High-heat-flux testing approaches established for low 
conductivity thermal barrier coating development

• Real-time monitoring of coating thermal conductivity 
demonstrated as an effective technique to assess coating 
performance

• The low conductivity thermal barrier coatings demonstrated 
improved thermal stability and cyclic durability

• High toughness, erosion resistant turbine airfoil thermal barrier 
coating development showed significant progress

• Advanced 1650 °C (3000 °F) thermal/environmental systems 
developed for Si-based ceramics
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